Digital Image Processing Chapter 8: Image Compression-2

Outline

1 Fundamentals

2 Some basic compression method

- Huffman coding
- Arithmetic coding
- LZW coding

. . .

- Block Transform coding
- Predictive coding

Error-Free Compression: Huffman Coding

Huffman coding: give the smallest possible number of code symbols per source symbols.

Step 1: Source reduction

Original source		Source reduction				
Symbol	Probability	1	2	3	4	
$a_2 \\ a_6 \\ a_1 \\ a_4 \\ a_3 \\ a_5$	0.4 0.3 0.1 0.1 0.06 	0.4 0.3 0.1 0.1 0.1	0.4 0.3 -0.2 0.1	0.4 0.3 	► 0.6 0.4	

Error-Free Compression: Huffman Coding

Step 2: Code assignment procedure

Original source			Source reduction							
Sym.	Prob.	Code	1	1	2	2		3	4	ļ
$a_2 \\ a_6 \\ a_1 \\ a_4 \\ a_3 \\ a_5 $	0.4 0.3 0.1 0.06 0.04	1 00 011 0100 01010	0.4 0.3 0.1 0.1 —0.1	1 00 011 0100 0101	0.4 0.3 0.2 0.1	1 00 010 -	0.4 0.3 —0.3	1 00 - 01 -	—0.6 0.4	0 1

The code is instantaneous uniquely decodable without referencing succeeding symbols.

Arithmetic Coding

Nonblock code: one-to-one correspondence between source symbols And code words does not exist.

Concept: The entire sequences of source symbols is assigned a single arithmetic code word in the form of a number in an interval of real number between 0 and 1.

Arithmetic Coding Example

Source Symbol	Probability	Initial Subinterval
a_1	0.2	[0.0, 0.2)
a_2	0.2	[0.2, 0.4)
a_3	0.4	[0.4, 0.8)
a_4	0.2	[0.8, 1.0)

LZW Coding

Lempel-Ziv-Welch coding : assign fixed length code words to variable length sequences of source symbols.

Entry
0
1
:
255
_
:
—

LZW Coding

	Currently Recognized Sequence	Pixel Being Processed	Encoded Output	Dictionary Location (Code Word)	Dictionary Entry
		39			
	39	39	39	256	39-39
	39	126	39	257	39-126
	126	126	126	258	126-126
	126	39	126	259	126-39
	39	39			
	39-39	126	256	260	39-39-126
	126	126			
	126-126	39	258	261	126-126-39
	39	39			
	30-39	126	\frown		
	39-39-126	126	260	262	39-39-126-126
21 Rits	126	39			
27 DIts	126-39	39	259	263	126-39-39
	30	126			
	39-126	126	257	264	39-126-126
9 Bits	126		126		