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Abstract: Small cell lung cancer (SCLC), accounting for about 15% of all cases of lung cancer
worldwide, is the most lethal form of lung cancer. Despite an initially high response rate of SCLC to
standard treatment, almost all patients are invariably relapsed within one year. Effective therapeutic
strategies are urgently needed to improve clinical outcomes. Replication stress is a hallmark of SCLC
due to several intrinsic factors. As a consequence, constitutive activation of the replication stress
response (RSR) pathway and DNA damage repair system is involved in counteracting this genotoxic
stress. Therefore, therapeutic targeting of such RSR and DNA damage repair pathways will be likely
to kill SCLC cells preferentially and may be exploited in improving chemotherapeutic efficiency
through interfering with DNA replication to exert their functions. Here, we summarize potentially
valuable targets involved in the RSR and DNA damage repair pathways, rationales for targeting them
in SCLC treatment and ongoing clinical trials, as well as possible predictive biomarkers for patient
selection in the management of SCLC.
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1. Introduction

Small cell lung cancer (SCLC) is a deadly neuroendocrine tumor that accounts for 15% of all lung
cancers [1,2]. SCLC distinguishes clinically from non-small cell lung cancer by its rapid growth and
early distant metastases [3]. During the past three decades, the treatment strategy for SCLC is extremely
limited, and chemotherapy remains the cornerstone of therapeutic options for SCLC patients [4]. In
mammalian cells, the maintenance of genome integrity requires faithful DNA duplication during cell
cycle progression [5,6]. To transmit DNA precisely to daughter cells, cells have evolved coordinated
and interweaved molecular networks to antagonize the genotoxic stress generated from intrinsic
factors and extrinsic causes [7–9]. The defects in the restriction and G1 checkpoints promote the
G1-S transition in SCLC cells, leading to premature onset of the S phase [10,11]. Amplification of
oncogenes such as MYC family genes and activation of signal transduction cascades like the PI3K/AKT
pathway in SCLC also drive rapid cell proliferation [12]. Promotion of S phase entry and demands of
unrestrained proliferation often interfere with DNA replication and induce stalled replication fork
termed replication stress (RS; Figure 1) [13]. When the impediments to DNA replication progression
cannot be handled in time, the stalled replication forks are susceptible to fork collapse, leading to highly
lethal DNA double-strand breaks (DSBs) [14,15]. To prevent the cytotoxicity caused by replication
stress, SCLC cells develop a robust DNA damage response (DDR) network including an effective
replication stress response (RSR) pathway and a constitutive DNA repair system to tolerate high levels
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of RS and to reduce consequent DNA damage [16] (Figure 2). However, the high RS level and the
strong DNA damage response in SCLC create a vulnerability to genome integrity. Indeed, SCLC often
presents with a super high mutation burden [12]. Thus, a coherent understanding of how SCLC cells
manipulate replication stress response (RSR) to control DNA replication and to fix damaged DNA
may facilitate the development of new therapeutic strategies and circumvent drug resistance in the
SCLC treatment. Recent advances in transcriptomics and proteomics have identified a significantly
elevated expression of a number of genes, which encode vital proteins responsible for DNA damage
response in SCLC including ATR, CHK1, WEE1, and BRCA1 [17]. In recent years, a great amount
of effort has been put on the discovery and development of compounds that would exploit defects
in DNA replication and DNA repair to treat cancer [18]. However, although the single therapeutic
agents to target DNA damage response have shown promising effects, the drug-resistance is often
observed due to the complexity of the DNA damage response network [19,20]. Therefore, to expand
the therapeutic efficacy, combinations of replication stress inducers with other therapeutics have been
investigated in preclinical and clinical studies and have shown augmented beneficial effects compared
with either agent alone [21–24].
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Figure 1. Causes of replication stress in small cell lung cancer (SCLC) cells. A number of endogenous
obstacles that lead to replication stress in SCLC, including inactivation of tumor suppressors RB1 and
p53, as well as amplification of MYC family genes. RB1 loss or amplification of MYC family genes
promotes G0-G1 cell cycle entry, p53 mutation leads to deficient G1/S DNA damage checkpoint.
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Figure 2. The DNA damage response network in SCLC cells. (A) The roles of the ATR-CHK1 signaling
cascade in response to replication stress, replication protein A (RPA) is first loaded onto long stretches
of single-strand DNA (ssDNA). The ATR was then recruited to the ssDNA sites through interaction
with ATRIP. Once activated, ATR-mediated activation of CHK1 then transmits signals of replication
stress through multiple mechanisms. (B) Once persistent replication stress cannot be fixed, replication
forks then collapse into double-strand breaks (DSBs). In response to DSBs, SCLC cancer cells activate
two major DSB repair pathways: Homologous recombination (HR) and non-homologous end joining
(NHEJ). Crucial proteins involved in the HR repair pathway include BRCA1/2, CHK1/2, RAD51, ATM,
etc.; the core components of the NHEJ repair pathway comprise KU70/80, XRCC4, DNA-PK, etc. Thus,
constitutive activation of the replication stress response (RSR) pathway and DSB repair system is crucial
for maintaining SCLC cell survival.

Here, we provide an overview of the major sources of replication stress in SCLC cells and the
signaling pathways responsible for DDR. We then outline the pharmacological approaches to exacerbate
replication stress and to target DNA damage repair for SCLC treatment, with a specific focus on RSR
and DSB repair. Lastly, we discuss the combination strategies for treatment and propose the potential
strategies to further augment treatment efficacy for SCLC.

2. Sources of Replication Stress in SCLC

DNA replication stress, arising from endogenous sources, is a hallmark of SCLC [16]. Accumulating
evidence indicates that several mechanisms contribute to replication stress in SCLC.

Loss of tumor suppressors and activation of oncogenes are emerging sources of replication stress
(Figure 1). Several lines of evidence indicate that tumor suppressors p53 and RB1 are inactivated in
nearly 100% of SCLC [11,12,25]. Both p53 and RB1 play crucial roles during cell cycle progression.
Given that RB1 associates with the E2F family to suppress cell proliferation, mutated RB1 cannot bind
to the E2F family, and the release of E2F family transcription factors activates its downstream targets
to degrade the restriction point and promote early initiation of DNA replication [26,27]. In addition,
inactivation of p53 leads to loss of activity of G1 checkpoint, which favorites G1-S transition. MYC
family members, including MYC, MYCN, and MYCL, are exclusively amplified or overexpressed in a
subset of SCLC tumors [12]. MYC family members act as transcription factors (TFs) to promote the S
phase entry through promoting increased replication initiation and origin firing [10,28]. Premature
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onset of S phase or constitutive activation of oncogenes often leads to defects in nucleotide biosynthesis
and the DNA replication machinery [29].

Abnormal cellular metabolism causes replication stress [30,31]. Cancer cells often rewire metabolic
flux to generate metabolites as either a direct or indirect consequence of activation of oncogenic pathways
such as PI3K/AKT, which meet the demands for sustained proliferation and many other fundamental
cellular functions in SCLC cells [32]. As metabolites such as deoxynucleoside triphosphates (dNTPs)
are the basic units for DNA replication, any disturbance of nucleotide anabolism may interfere with
DNA replication machinery [33]. The accumulation of reactive oxygen species (ROS) in cancer cells, a
common phenomenon in cancer cells, also results in the generation of oxidized nucleotides, which
would stall the replication fork [34].

As DNA replication occurs in the context of chromatin, any perturbation of chromatin dynamics
may evoke replication stress [35]. Nucleosome, the basic unit of chromatin, is formed by wrapping
146 base-pair of DNA around an octamer consisting of pairs of each of the four core histones
(H2A, H2B, H3, and H4) [36]. The tails of histone, especially histone H3 and H4, are subject to
post-translational modifications, like methylation, acetylation, phosphorylation, ubiquitylation, and
sumoylation. Aberrant chromatin structure mediated by histone modifications and ATP-dependent
remodeling may affect chromatin accessibility to nuclear proteins such as DNA polymerases, thereby
impeding DNA replication progression, RSR, and DNA repair [37,38]. A number of chromatin
modifiers and a range of chromatin-associated changes have been observed at and near sites of
replication forks, confirming an indispensable role of chromatin structure in the DNA replication
machinery [39]. Furthermore, chromatin modifiers also affect the expression of DNA-replicative
enzymes by transcriptional regulation.

3. DNA RSR and DSB Repair

If the stalled replication forks are sufficiently prolonged, static extended stretches of single-strand
DNA (ssDNA) can be generated by the replicative mini-chromosome maintenance (MCM) [40,41]. In
response to replication stress, replication protein A (RPA) is the first one to be loaded onto the unstable
ssDNA, and the long stretches of RPA-coated ssDNA adjacent to double-strand DNA (dsDNA) act as a
platform to trigger the ATR/CHK1 RSR signaling pathway with the assistance of a number of mediator
proteins including TOPBP1 and ETAA1 [29,42,43] (Figure 2). Upon activation, CHK1 dissociates from
Claspin to phosphorylate a number of regulators of cell division including phosphatase CDC25A
and CDC25C, leading to the arrest of cell cycle progression either in the S-phase or at the boundary
of G2/M [29,44]. On the other hand, the ATR-CHK1 pathway suppresses excess late origin firing by
multipronged actions. Together, these events stabilize the stalled replication forks and prevent the
exhaustion of dNTP pools and replication factors, providing cells with the necessary time to resolve
the persistent replication stress [44–46].

When the stalled replication fork cannot be stabilized, fork then collapse into a double-strand
break, which is the most lethal type of DNA damage [47]. In response to DSBs, the MRE11-RAD50-NBS1
(MRN) complex recruits ATM to damaged DNA sites and stimulates ATM kinase activity [48]. ATM
then targets multiple substrates such as the downstream effector kinase CHK2 to induce cell cycle arrest,
and to initiate DNA repair. Two major DNA repair pathways are responsible for DSB repair: Faithful
homologous recombination (HR) and error-prone non-homologous end joining (NHEJ) [18,49–51].
Taken together, targeting RSR or DSB repair may provide an avenue for improving SCLC treatment
efficacy (Figure 3).
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Figure 3. The rationales for targeting RSR and DSB repair in SCLC. (A) In normal cells, an elegant
balance between the endogenous replication stress and competent DNA damage response pathway
maintains genome integrity. (B) In SCLC cells, targeting RSR leads to intolerable replication stress (RS),
thus leading lethal RS levels and DSBs that cannot be fixed by SCLC cells. Similarly, perturbation of
DSB repair system results in compromised DNA damage repair and lethal DSBs that cannot be fixed by
SCLC cells. Red arrow indicates an increase of DSBs.

4. Current Chemotherapy for Small Cell Lung Cancer Patients and Its Limitation

Chemotherapy regime of cisplatin or carboplatin plus etoposide remains the major first-line
treatment option for SCLC patients with both limited and extensive-stage disease [4,52].
Chemotherapeutic agents currently used in SCLC achieve therapeutic effects primarily through
directly or indirectly boosting replication stress [53]. Platinum-based compounds (cisplatin and
carboplatin) generate adducts on purine residues, thus resulting in the formation of inter-strand or
intra-strand crosslinks [54,55]. These crosslinks will physically block DNA replication progression.
Mechanistically, TOP2 cleaves double-stranded DNA to allow passage of an intact DNA duplex
through the TOP2-linked DSB [56]. Etoposide, a TOP2-specific inhibitor, stabilizes TOP2 cleavage
complexes, thus inducing DSBs and subsequent cell death if not repaired [57]. Besides, TOP1 reduces
DNA torsional stress created by twisting and supercoiling during DNA replication progression.
Topotecan, the drug approved by the FDA for second-line treatment of SCLC, traps TOP1 cleavage
complexes to prevent repair of single-strand breaks. Although SCLC patients do benefit from the
conventional chemotherapy strategy, the long-term outcomes remain poor. Additionally, traditional
chemotherapeutic agents used for SCLC patients in the clinic have achieved their therapeutic efficacy,
especially in cancer cells with the highly proliferative feature. However, the characteristics of these
DNA damage agents will kill both cancer cells and normal replicating cells such as hematopoietic
progenitor cells, therefore resulting in severe side-effects during the treatment of SCLC patients.
Together, the development of novel therapeutic strategies by specifically targeting the RSR pathway
and the DSB repair system should not only hope to augment therapeutic effects but also result in fewer
side-effects during the clinical treatment of SCLC [16].
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5. The Rationales for Enhancing Replication Catastrophe in SCLC

In recent years, exacerbating replication stress seems to be a powerful means to kill cancer
cells through mitotic catastrophe due to intolerable levels of replication stress [46]. In dealing with
high levels of endogenous or exogenous replication stress, SCLC cells have acquired an intricate
genome-protective mechanism to counteract high levels of replication stress during the long history of
cellular evolution [47]. Transcriptomic profiling analysis uncovered that a number of genes involved in
replication fork stabilization are overexpressed in SCLC cells, which might mediate replication stress
tolerance [58]. Besides, ATR/CHK1-dependent replication checkpoint is more active in SCLC cells than
that in NSCLC cells. More importantly, loss of function of p53 in SCLC cells causes a defective G1
checkpoint, which makes SCLC cells more rely on the intra-S and G2/M checkpoints. In one word,
the dependency of replication stress-related proteins in SCLC cells provides potential therapeutic
opportunities to harness replication stress to treat SCLC. Indeed, conventional therapeutic agents
such as DNA crosslinkers and topoisomerase inhibitors for SCLC achieve their treatment efficacy by
perturbation of DNA replication progression. In the last decade, emerging ways to enhance replication
stress have shown great potential for SCLC treatment. In this section, we summarize recent advances
in utilizing replication stress inducers for the treatment of SCLC.

5.1. Targeting Poly (ADP-Ribose) Polymerase (PARP) as a Therapeutic Option for SCLC

PARP family members are multifunctional proteins. One of the major functions of PARP1 is to
repair DNA single-strand breaks (SSBs) through base excision repair (BER) [59]. Meanwhile, PARP1
also plays an indispensable role in DSB repair pathways, including HR and NHEJ [60]. Inhibition of
PARP in BRCA1/2-deficient breast cancer cells leads to “synthetic lethality”. PARP inhibitors, including
olaparib, niraparib, recuparib, and talazoparib have been approved by the FDA for treating advanced
breast cancer and ovarian cancer based on the concept of “synthetic lethality” [61–63]. Interestingly,
a previous study revealed that PARP recruits and collaborates with MRE11 at stalled replication
forks to mediate restart of replication forks [64]. Additionally, PARP inhibitors evoke strong CHK1
phosphorylation in several types of cancers [65,66]. Together these studies demonstrate a blockade of
PARP heightens replication stress and implicate PARP as a potent therapeutic target for SCLC.

PARP1 is an attractive therapeutic target in SCLC at least partially due to its high expression [17].
PARP inhibitors, including olaparib and recuparib, are highly effective in treating SCLC preclinical
models. Besides, a high potent PARP trapper talazoparib exhibits strikingly single-agent activity in
SCLC [67]. Of note, the sensitivity of PARP inhibitors in SCLC is associated with the expression of a
number of DNA damage repair proteins and the activity of the PI3K/AKT pathway [67]. Since DDR
proteins are crucial for maintaining SCLC proliferation, targeting either the RSR pathway or DSB repair
system might sensitize SCLC cells to PARP inhibitor. Interestingly, SLFN11, a replication stress sensor,
has been demonstrated as a biomarker for predicting the sensitivity of PARP inhibitor talazoparib in
SCLC, further emphasizing perturbation of RSR pathway sensitizes SCLC to PARP inhibition [68].
Based on the above preclinical studies, currently, PARP inhibitor olaparib as a monotherapy is
being evaluated in phase II clinical trials in SCLC (NCT03009682). Meanwhile, the clinical trial of
PARP inhibitor talazoparib as a monotherapy has shown encouraging activity in the treatment of
SCLC (NCT01286987).

5.2. Targeting ATR/CHK1 Signaling Cascade in SCLC

The ATR/CHK1 signaling cascade plays a pivotal role in suppressing replication stress [69].
Excessive replication stress is harmful to cancer cells as it causes the failure of the mitosis progression
and undergoes mitotic catastrophe. The activation of ATR/CHK1 signaling cascade avoids the
accumulation of excessive ssDNA and preserves genome integrity [70]. CHK1, an essential mediator
of DNA damage-induced cell cycle arrest in the S phase and G2 phase, is highly expressed in SCLC,
indicating that SCLC might depend on a robust RSR to confront high genotoxic stress [71]. Indeed,
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CHK1 inhibitor prexasertib as a single-agent has shown remarkable anti-tumor activity in a preclinical
study [21]. A transcriptomic profile found that the expression of CDC25 is much higher in SCLC
than that in NSCLC [22]. Pharmacological inhibition of SCLC cells by ATR inhibitor VE-822 and
CHK1 inhibitor PF-477736 selectively eliminates SCLC cells, but not NSCLC cells [22]. Additionally,
ATR/CHK1 signaling cascade also can be activated by DSB. Therefore, the anti-tumor activity of ATR
and CHK1 inhibitors might be due to both compromised RSR and a blockade of DSB repair. Further
analysis identifies MYC as a predictive biomarker of sensitivity to CHK1 inhibitors in SCLC. Clinical
evaluation of therapeutic efficacy of CHK1 inhibitors in SCLC has shown promising anti-tumor effects
(NCT02735980).

5.3. WEE1 as a Therapeutic Target in the Treatment of SCLC

The WEE1 kinase serves as a gatekeeper through regulating both S-phase and G2/M phase
checkpoints [72,73]. Although WEE1 is not the core component of the RSR pathway, activation of
WEE1 by CHK1 targets CDK1 and CDK2 to slow down cell cycle progression upon DNA lesions. Thus,
the WEE1 inhibitor may force cells to enter mitosis in the presence of incomplete DNA replication,
which might trigger replication stress due to aberrations of replication dynamics and dNTP supply [74].
Furthermore, in cells deficient for p53, WEE1 is important for maintaining genome integrity. Therefore,
targeting G2/M checkpoint may provide therapeutic opportunities for SCLC patients. Of note,
preclinical studies have shown that the majority of SCLC cell lines are sensitive to WEE1 inhibitor
AZD1775 [75]. Further investigation based on SCLC circulating tumor cell-derived explant (CDX)
models demonstrated that MYCL-induced replication stress and defects in HR repair sensitize SCLC
cells to the WEE1 inhibition [76]. Additionally, another study showed that inhibition of AXL or mTOR
confers deficiency in DNA repair, and thus enhances the efficacy of WEE1 inhibitor in SCLC [75]. Based
on these results, the efficiency of the WEE1 inhibitor and the candidate biomarkers for patient selection
in relapsed SCLC is under clinical investigation (NCT02482311; NCT02593019). Besides, phase II study
of WEE1 inhibitor AZD1775 as a monotherapy in relapsed SCLC with MYC family amplification is
underway to evaluate its therapeutic efficacy (NCT02688907).

6. The Rationales for Targeting Homologous Recombination Pathway and Non-Homologous End
Joining Pathway in the Treatment of SCLC

Although alterations in DSB repair genes in SCLC have been found rarely by a comprehensive
genomic profile, proteomic and transcriptomic studies have identified that DNA repair proteins tend
to be overexpressed in SCLC [17,58]. In cancer cells with persistent replication stress, failure to stabilize
the stalled forks may lead to DSB formation. SCLC cells may drive reliance on a constitutive DSB
repair system, which mostly depends on HR and NHEJ repair pathways to repair lethal DNA lesions
for cell survival (Figure 2). Therefore, the crucial role of the DSB repair system in SCLC cells constitutes
a vulnerability to be exploited therapeutically.

6.1. Targeting the Core Components of the DSB Repair Pathway for SCLC Treatment

ATM functions as an apex transducer in response to DSBs. In recent years, ATM emerges as a
therapeutic target for cancer treatment [77,78]. A number of ATM inhibitors have been developed, and
the preclinical studies of these inhibitors have shown potential anti-tumor effects in several types of
cancers [79]. RAD51, a core component of the HR pathway, is another therapeutic candidate that can
be targeted for cancer treatment. It has been shown that RAD51 is required for etoposide-induced DSB
repair in SCLC, and high expression of RAD51 is associated with radioresistance in a SCLC preclinical
model [80]. DNA-dependent protein kinase (DNA-PK), a serine/threonine protein kinase, plays a
central role in the NHEJ pathway. Similarly, DNA-PK has been found to contribute to chemoresistance
in SCLC [81]. Given that high expression of key components of DSB repair pathways in SCLC, it
is conceivable to test the therapeutic effects of targeting the crucial proteins involved in DSB repair
pathways in SCLC.
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6.2. PLK1 as a Therapeutic Target in the Treatment of SCLC

Besides the core components of the DSB repair system, several cell cycle regulators could also
be targeted since they play indispensable roles in DNA damage checkpoints [82]. PLK1, one of
five members of the family of PLKs, is traditionally recognized as a key cell cycle regulator [83].
Accumulating evidence indicates that PLK1 is involved in DNA damage response and G2 DNA
damage recovery pathway through regulation of CDC25C and WEE1 [84]. Although the therapeutic
benefit of a single-agent PLK1 inhibitor has been obtained in SCLC preclinical models, a clinical trial has
shown that relapsed SCLC was not responsive to single-agent PLK1 inhibitor BI2536 [85,86]. Therefore,
new therapeutics that expands the utility of the PLK1 inhibitor and identification of biomarkers for
patient selection in SCLC warrants further studies.

6.3. Aurora Kinase as a Therapeutic Target in the Treatment of SCLC

Aurora kinases are regarded as key cell cycle mediators through regulating G2/M DNA damage
checkpoint and other mitotic events [87]. Mechanistically, Aurora kinase A which is encoded by
AURKA promotes mitosis entry through phosphorylating and activating PLK1 [88]. Aurora kinase B
serves as a component of the chromosomal passenger complex to regulate chromosome segregation
and cytokinesis in mitosis [89]. The gene encoding Aurora kinase A is frequently amplified in various
cancer types, including SCLC, highlighting it as a potent therapeutic target in cancer treatment. A
recent study showed that AURKA/TPX2 acts as a heterodimer to protect stalled replication forks after
DNA damage [90]. Loss of AURKA compromises DNA end resection, thus, decreasing homologous
recombination activity [90]. In ovarian cancer, inhibition of Aurora kinase A stimulates NHEJ signaling
activity by increasing phosphorylated DNA-PK and reduces HR activity through decreasing PARP
and BRCA1/2 expression [91]. Indeed, several preclinical studies have demonstrated the therapeutic
efficacy of Aurora kinase inhibitors in SCLC [92–94]. Further investigation indicates that SCLC cells
with MYC amplification or MYC overexpression are significantly more responsive to Aurora kinase
inhibitors such as alisertib and barasetib than MYC family gene-non-amplified SCLC. A clinical phase
II study of alisertib in combination with paclitaxel obtained an impressive response rate compared
with placebo in combination with paclitaxel in SCLC patients (NCT02038647). Besides, additional
Aurora kinase inhibitors are under clinical development to assess its therapeutic activity (NCT03216343;
NCT03898791; NCT03092934).

7. Using Drug Combinations for Optimizing SCLC Treatment

Mounting evidence has demonstrated that targeting the key component of either the RSR pathway
or DSB repair system as a monotherapy shows promising anti-tumor efficacy in SCLC. However,
DDR-based targeted therapy in combination with other therapeutics may exhibit greater therapeutic
effect in the treatment of SCLC.

7.1. Combination of Targeting RSR with Conventional Therapeutics

Given that long-term toxicity of chemotherapy to normal tissues, developing novel drug
combinations will not only provide the most efficacious anti-tumor effects but also minimize drug
toxicity in the process of cancer treatment. Recently, it was reported that CHK1 inhibition synergizes
with cisplatin to induce substantial cell apoptosis in SCLC cells regardless of p53 status [95]. Meanwhile,
preclinical studies indicated that PARP inhibitors potentiate the activity of chemotherapeutic agents [68].
In clinical trials, PARP inhibitor veliparib has been evaluated in combination with cisplatin or etoposide
in extensive-stage SCLC, and this combination strategy has shown improved efficacy compared to
the standard of care [23,24]. AZD1775 in combination with carboplatin are being investigated in
clinic (NCT02937818). As radiotherapy is also the standard treatment option for SCLC patients, a
recent study demonstrates PARP inhibition enhances the effects of radiotherapy in a panel of cell
lines and patient-derived xenograft (PDX) models [96]. Moreover, combination of an ATR inhibitor
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with whole-brain radiation therapy in the treatment of SCLC is now under clinical investigation
(NCT02589522).

7.2. Co-Targeting the RSR Pathway and the DSB Repair System

As SCLC may utilize multiple repair mechanisms to cope with replicative DNA damage in SCLC,
targeting multiple components of a DNA damage response would hope to circumvent drug-resistance
and eradicate this disease. A recent report demonstrates that WEE1 inhibition potentiates the activity
of PARP inhibitor in a SCLC preclinical model [76]. A clinical trial of AZD1775 in combination with
olaparib for relapsed SCLC is underway (NCT02511795). In addition to directly target these repair
proteins, combining a PI3K pathway inhibitor and a PARP inhibitor has shown synergistic anti-tumor
effects in SCLC and warrants further consideration for clinical trials [97]. Targeting epigenetic factors
such as BET family members cause defects in DSB repair and might provide beneficial effects in
combination with PARP inhibitors [98]. Preclinical studies using BET inhibitor and PARP inhibitor
combination have shown the superior anti-tumor efficacy compared to either agent alone in various
cancer types [99–101]. We speculate that BET inhibition might enhance the anti-tumor activity of PARP
inhibitor in SCLC through interference with DNA damage response.

7.3. Combination of Targeting DDR with Immunotherapy

Several preclinical studies have shown that the increase of replication stress triggers the activation
of an innate immune response, providing a rationale for the combination of DDR-targeting agents and
immunotherapy to treat SCLC [53,102,103]. Recently, the combination of chemotherapy with anti-PD-L1
demonstrated prolonged progression-free survival and was approved as a first-line treatment option
for extensive-stage SCLC patients (NCT02763579) [104]. In another work, the authors elegantly showed
that targeting PARP or CHK1 increases PD-L1 expression in SCLC cells and combined use of the PARP
or CHK1 inhibitor with the PD-L1 blockade significantly augments anti-tumor efficacy compared to
either monotherapy in SCLC [105].

8. Conclusions and Prospects

It has been increasingly apparent that exceptional high genome instability in SCLC is likely due
to high levels of replication stress (Figure 1). SCLC cells count on an active RSR pathway and a
constitutive DSB repair system to confront this genotoxicity for cellular survival. Exploiting the DNA
damage response network provides an attractive avenue to treat SCLC. Besides the above targets,
identification of novel targets that might interfere with either RSR or DSB repair pathways is worth
further investigation. Targeted DDR therapy as a monotherapy or in combination with chemotherapy
has shown promising anti-tumor effects in both preclinical and clinical studies. Nonetheless, the
integration of targeted DDR therapy into other therapeutic strategies to achieve greater synergy effects
and to overcome de novo resistance remains to be fully explored in SCLC.

Chromatin dynamics regulated by chromatin modifiers plays a crucial role in DNA replication
and DNA repair. For instance, BET bromodomain family proteins, including BRD2, BRD3, BRD4, and
BRDT, are well-recognized chromatin readers of histone acetylation marks. Several lines of evidence
have indicated that BET family proteins are involved in DNA damage response. Inhibition of BRD4
attenuates a replication stress response and impairs HR repair, providing a rationale for combination of
BET inhibitor with drugs targeting DDR for cancer treatment [106]. Many chromatin modifiers can be
manipulated by small molecular inhibitors. Co-targeting epigenetic factors and DDR proteins is an area
of interest in the improvement of the treatment efficacy for this recalcitrant disease. The links between
metabolism and DNA damage response network has been well-documented in the past few years.
Metabolic reprogramming is a common feature in SCLC [107]. Targets for regulating metabolism have
the potential to leverage replication stress and DSB repair, thereby augmenting the therapeutic efficacy
of DNA damage agents against SCLC. PARP inhibitors have been demonstrated to elicit an anti-tumor
immune response, and PARP inhibition expands the efficacy of immune checkpoint blockade (ICB) in
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SCLC [105]. As PARP inhibition induces extensive replication stress, combination of other replication
stress-inducing agents like the WEE1 inhibitor with ICB might also hold great promise to treat SCLC.

In summary, identifying novel targets and promising combinations between targeted DDR therapy
and other therapeutics should pay more attention. Further investigations on the molecular mechanisms
for the effects of single-agents and the synergy effects of combination treatments might improve the
therapeutic efficacy for the treatment of SCLC.
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